
S. S Jain Subodh P.G. (Autonomous) College
SUBJECT - PHP
TITLE - Cookies and Session Management

Cookies and Session Management
-by Praveen Choudhary

Contents
 Cookies

 Brief overview
 Limitation
 Privacy
 Type of cookies
 Manage cookies

 Sessions
 Brief overview
 HTTP Session Token
 Session Advantages

Cookies
• A cookie is a small text file that contains a small

amount of information about a user visiting your site
and is stored on the site visitor's computer by their
browser.

• Because the cookie is stored on the user’s computer,
it does not require any server space no matter how
many users you have.

• You can use cookies to save user preferences,
customize data, remember the last visit, or to keep
track of items in an order while a user browses.

Limitation

• The cookie specification introduced by
Netscape also places limits on cookies.
These limits are:

– 310 total cookies.
– 4 kilobytes per cookie
– 20 cookies per server or domain.

Privacy
• Cookies can only be read by the site that

created them, or a site 'underneath' the site
that created them. This prevents other
websites from stealing cookies.

Types of cookies
There are three different types of cookies.

– First Party Cookies are written by your site and can only be read
by your site.

– Third Party Cookies are created by advertising in your page that
is loaded from a third party site. These can only be read by the
advertising code on any site displaying the same ads.

– Session Cookies are not actually written to a file but are stored
in the browser itself. These cookies only last as long as the
browser is open.

Setting a cookie

Setting a cookie

Setting a cookie

A few examples of cookie setting

Examples of cookie setting

Examples of cookie setting
• Strictly speaking, we should be escaping our cookie values -

encoding non-alphanumeric characters such as spaces and
semicolons. This is to ensure that our browser can interpret
the values properly. Fortunately this is easy to do with
JavaScript's escape() function.
For example:

document.cookie = "username=" + escape("John
Smith") + "; expires=15/02/2003

00:00:00";

A function to set a cookie
Setting cookies will be a lot easier if we can write a simple function to do stuff
like escape the cookie values and build the document.cookie string.

function set_cookie(name, value, exp_y, exp_m, exp_d, path,
domain,

secure) {
var cookie_string = name + "=" + escape(value);
if (exp_y) {

var expires = new Date(exp_y, exp_m, exp_d);
cookie_string += "; expires=" + expires.toGMTString();

}
if (path) cookie_string += "; path=" + escape(path);
if (domain) cookie_string += "; domain=" + escape(domain);
if (secure) cookie_string += "; secure";
document.cookie = cookie_string;

}

A function to set a cookie
• For example, to use this function to set a cookie with

no expiry date:
set_cookie("username", "John Smith”);

• To set a cookie with an expiry date of 15 Feb 2003:
set_cookie("username", "John Smith",
2003, 01,
15);

• To set a secure cookie with an expiry date and a
domain of elated.com, but no path:
set_cookie("username", "John Smith",
2003, 01, 15, "", "elated.com",
"secure”);

A function to delete a cookie
Another useful cookie-handling function is provided below. This

function will "delete" the supplied cookie from the browser by
setting the cookie's expiry date to one second in the past

function delete_cookie(cookie_name)
{
var cookie_date = new Date();
cookie_date.setTime(cookie_date.getTime(
) - 1); document.cookie = cookie_name +=
"=; expires=" +
cookie_date.toUTCString();

}

A function to delete a cookie
• To use this function, just pass in the name of

the cookie you would like to delete - for
example:

delete_cookie("username”);

Retrieving cookies
• To retrieve all previously set cookies for the current

document, you again use the document.cookie
property:
var x = document.cookie;

• This returns a string comprising a list of name/value
pairs, separated by semi-colons, for all the cookies that
are valid for the current document. For example:
"username=John; password=abc123"

• In this example, 2 cookies have been previously set:
username, with a value of "John", and password, with
a value of "abc123".

A function to retrieve a cookie
Usually we only want to read the value of one cookie at a time, so

a string containing all our cookies is not that helpful. So here's
another useful function that parses the document.cookies
string, and returns just the cookie we're interested in:

function get_cookie(cookie_name)

{

var results = document.cookie.match('(^|;) ?' +
cookie_name + '=([^;]*)(;|$)’);

if (results)

return (unescape(results[2]));

else return null;

}

A function to retrieve a cookie
• Using the function is easy. For example, to

retrieve the value of the username cookie:

var x = get_cookie
("username");

Sessions
• Sessions are a combination of a server-side

cookie and a client-side cookie.

• Client-side cookie simply holds a value (session
token) that uniquely identifies the client to the
server, and corresponds to a data file on the
server.

• Thus, when the user visits the site, their browser
sends the reference code to the server, which
loads the corresponding data.

HTTP session token
• A session token is a unique identifier that is

generated and sent from a server to a client to
identify the current interaction session.

• The client usually stores and sends the token
as an HTTP cookie and/or sends it as a
parameter in GET or POST queries.

HTTP session token
• The reason to use session tokens is that the client only

has to handle the identifier—all session data is stored
on the server (usually in a database, to which the client
does not have direct access) linked to that identifier.

• Examples of the names that some programming
languages use when naming their HTTP cookie include
JSESSIONID (JSP),
PHPSESSID (PHP),
ASPSESSIONID (ASP).

Sessions advantages
• Your server-side cookie can contain very large amounts of

data with no hassle - client-side cookies are limited in size

• Your client-side cookie contains nothing other than a small
reference code - as this cookie is passed each time
someone visits a page on your site, you are saving a lot of
bandwidth by not transferring large client-side cookies
around

• Session data is much more secure - only you are able to
manipulate it, as opposed to client-side cookies which are
editable by all

