
S. S Jain Subodh P.G. (Autonomous) College
SUBJECT - Object Oriented Programming
TITLE - Inheritance

Inheritance
-by Praveen Choudhary

What is Inheritance?

Inheritance is the ability of one class to inherit the
properties of another class. A new class can be
created from an existing class. The existing class is
called the Base class or Super class and the new class
is called the Derived class or Sub-class.

e.g:

Car inherits from another class auto-mobile.
Science student inherits from class student

Advantages of Inheritance:

1. Reusability of code
2. Size of the code is reduced.
3. Transitivity:

If B is derived from A and C is derived from B
then C is also derived from A.

Person - Base Class

Student - Derived class

QUADRILATERAL

SQUARE RECTANGLE RHOMBUS

Identify the type of inheritance:

class FacetoFace
{

char CenterCode[10];
public:

void Input();
void Output()

};

class Online
{

char website[50];
public:
void SiteIn();
void SiteOut();

};

class Training : public FacetoFace, private Online
{

long Tcode;
float Charge;
int Period;

public:
void Register();
void Show();

};

Base Classes:
FacetoFace Online

Derived Class:
Training

Multiple base classes so multiple inheritance

Class Dolls
{

char Dcode[5];

protected:
float price;
void CalcPrice(float);

public:
Dolls();
void Dinput();
void Dshow();

};

class SoftDolls: public Dolls
{

char SDName[20];
float Weight;

public:
SoftDolls();

void SDInput();
void SDShow();

};

class ElectronicDolls: public Dolls
{

char EDName[20];
char BatteryType[10];
int Batteries;

public:
ElectronicDolls();
void EDInput();
void EDShow();

};

BASE CLASS: DOLLS

SoftDolls ElectronicDolls

Hierarchical Inheritance

class furniture
{

char Type;
char Model[10];

public:
furniture();
void Read_fur_Details();
void Disp_fur_Details();

};

class Sofa : public furniture
{

int no_of_seats;
float cost_of_sofa;

public:
void Read_sofa_details();
void Disp_sofa_details();

};

class office : private Sofa
{

int no_of_pieces;
char Delivery_date[10];

public:
void Read_office_details();
void Disp_office_details();

};

void main()
{

office MyFurniture;
}

Furniture

Sofa

office

Sofa is derived from furniture
Office is derived from sofa.

Multi-level Inheritance

Visibility Modes
It can be public, private or protected.
The private data of base class cannot be
inherited.
(i) If inheritance is done in public mode, public
members of the base class become
the public members of derived class and protected
members of base class become the protected
members of derived class.
(ii) If inheritance is done in a private mode, public and
protected members of base class become the private
members of derived class.
(iii) If inheritance is done in a protected mode, public
and protected members of base class become the
protected members of derived class.

Access public protected private

members of
the same
class

yes yes yes

members of
derived
classes

yes yes no

not members yes no no

Accessibility of Base Class members:

#include<iostream.h>
class one
{

int a; // only for class members
protected:
int b; // for class members and derived classes
public:
int c; // for class members, derived classes, main
one()
{

a=3;
b=5;
c=10;
}

void show()
{

cout<<a<<":"<<b<<":"<<c<<endl;
}
};

class two :public one
{

int p;
public:
two()
{

p=25;
}

void show1()
{

cout<<a<<endl; \\ error. Not accessible
cout<<b<<endl; \\o.k.
cout<<c<<endl; \\o.k.
}
};

class three : public two
{

int x;
public :
three()
{

x=100;
}
void show2()
{

cout<<x<<endl; \\o.k.
cout<<p<<endl; \\error. Not accessible
cout<<b<<endl; \\o.k.
cout<<c<<endl; \\o.k.
}
};

int main()
{

three ob;
cout<<ob.c<<endl; \\o.k. public member
cout<<ob.b<<endl; \\ error. Not available
ob.show();
ob.show1();
ob.show2();
return 0;

}

#include<iostream.h>
class one
{

int a; // only for class members
protected:
int b; // for class members and derived classes
public:
int c; // for class members, derived classes,main
one()
{

a=3;
b=5;
c=10;
}

void show()
{

cout<<a<<":"<<b<<":"<<c<<endl;
}
};

class two :protected one
{

int p;
public:
two()
{

p=25;
}

void show1()
{

cout<<a<<endl; // error. Not accessible
cout<<b<<endl; // o.k. protected
cout<<c<<endl; // o.k. becomes protected
}
};

class three : protected two
{

int x;
public :
three()
{

x=100;
}
void show2()
{

cout<<x<<endl; // o.k. its own member
cout<<p<<endl; // error. Not accessible
cout<<b<<endl; // o.k. protected
cout<<c<<endl; // o.k. has become protected

}
};

int main()
{

three ob;
cout<<ob.c<<endl; // error has become protected not available
cout<<ob.b<<endl; // error. Not available
ob.show(); // error. Has become protected not available
ob.show1(); // error. Has become protected not available
ob.show2(); // O.K.
return 0;

}

#include<iostream.h>
class one
{

int a; // only for class members
protected:
int b; // for class members and derived classes
public:
int c; // for class members, derived classes, main
one()
{

a=3;
b=5;
c=10;
}

void show()
{

cout<<a<<":"<<b<<":"<<c<<endl;
}
};

class two :private one
{

int p;
public:
two()
{

p=25;
}

void show1()
{

cout<<p<<endl; // o.k. its own member
cout<<a<<endl; // error. Not accessible
cout<<b<<endl; // error. has become private .

cout<<c<<endl; // error . has become private
}

};

class three : private two
{

int x;
public :
three()
{
x=100;

}
void show2()

{
cout<<x<<endl; // o.k. its own member
cout<<p<<endl; // error. Not accessible
cout<<b<<endl; // error. not available
cout<<c<<endl; // error. not available

}
};

int main()
{

three ob;
cout<<ob.c<<endl; // error not available
cout<<ob.b<<endl; // error. Not available
ob.show(); // error. not available
ob.show1(); // error . not available
ob.show2(); // o.k. its own member
return 0;

}

