
S. S Jain Subodh P.G. (Autonomous) CollegeS. S Jain Subodh P.G. (Autonomous) College
SUBJECT - DATA STRUCTURE
TITLE – QUICK SORT BY: SULOCHANA NATHAWAT

Quick SortQuick Sort

S. S Jain Subodh P.G. (Autonomous) College

Quick Sort

We use Divide-and-Conquer:

1. Divide: partition A[p..r] into two subarrays A[p..q-1] and A[q+1..r]
such that each element of A[p..q-1] is ≤ A[q], and each element of
A[q+1..r] is ≥ A[q]. Compute q as part of this partitioning.

2. Conquer: sort the subarrays A[p..q-1] and A[q+1..r] by recursive2. Conquer: sort the subarrays A[p..q-1] and A[q+1..r] by recursive
calls to QUICKSORT.

3. Combine: the partitioning and recursive sorting leave us with a
sorted A[p..r] – no work needed here.

An obvious difference between Merge sort and Quick sort is that we

do most of the work in the divide stage, with no work at the combine

one.

S. S Jain Subodh P.G. (Autonomous) College

Partitioning in Quicksort

A key step in the Quicksort algorithm is
partitioning the array

– We choose some (any) number p in the array to – We choose some (any) number p in the array to
use as a pivot

– We partition the array into three parts:
p

numbers less
than p

numbers greater than or
equal to p

p

S. S Jain Subodh P.G. (Autonomous) College

Quicksort(A, p, r)
if p < r then

q := Partition(A, p, r);
Quicksort(A, p, q – 1);
Quicksort(A, q + 1, r)

Partition(A, p, r)
x := A[r], i:= p – 1;
for j := p to r – 1 do

if A[j]  x then
i := i + 1;

A[i]  A[j]A[p..r]

The Pseudo-Code

A[i]  A[j]
A[i + 1]  A[r];
return i + 15

A[p..r]

A[p..q – 1] A[q+1..r]

 5  5

Partition 5

S. S Jain Subodh P.G. (Autonomous) College

p r
initially: 2 5 8 3 9 4 1 7 10 6 note: pivot (x) = 6

i j

next iteration: 2 5 8 3 9 4 1 7 10 6
i j

next iteration: 2 5 8 3 9 4 1 7 10 6

Partition(A, p, r)
x, i := A[r], p – 1;
for j := p to r – 1 donext iteration: 2 5 8 3 9 4 1 7 10 6

i j

next iteration: 2 5 8 3 9 4 1 7 10 6
i j

next iteration: 2 5 3 8 9 4 1 7 10 6
i j

for j := p to r – 1 do
if A[j]  x then

i := i + 1;
A[i]  A[j]

A[i + 1]  A[r];
return i + 1

S. S Jain Subodh P.G. (Autonomous) College

next iteration: 2 5 3 8 9 4 1 7 10 6
i j

next iteration: 2 5 3 8 9 4 1 7 10 6
i j

next iteration: 2 5 3 4 9 8 1 7 10 6 Partition(A, p, r)

*

next iteration: 2 5 3 4 9 8 1 7 10 6
i j

next iteration: 2 5 3 4 1 8 9 7 10 6
i j

next iteration: 2 5 3 4 1 8 9 7 10 6
i j

next iteration: 2 5 3 4 1 8 9 7 10 6
i j

after final swap: 2 5 3 4 1 6 9 7 10 8
i j

Partition(A, p, r)
x, i := A[r], p – 1;
for j := p to r – 1 do

if A[j]  x then
i := i + 1;

A[i]  A[j]
A[i + 1]  A[r];
return i + 1

S. S Jain Subodh P.G. (Autonomous) College

Partitioning
• Select the last element A[r] in the subarray A[p..r] as

the pivot – the element around which to partition.
• As the procedure executes, the array is partitioned

into four (possibly empty) regions.
1. A[p..i] — All entries in this region are < pivot.1. A[p..i] — All entries in this region are < pivot.

2. A[i+1..j – 1] — All entries in this region are > pivot.

3. A[r] = pivot.
4. A[j..r – 1] — Not known how they compare to pivot.

• The above hold before each iteration of the for loop,
and constitute a loop invariant. (4 is not part of the
loop.)

S. S Jain Subodh P.G. (Autonomous) College

• Initialization. Before the first iteration: i=p-1, j=p. No values
between p and i; no values between i+1 and j-1. The first two
conditions are trivially satisfied; the initial assignment satisfies 3.

• Maintenance. Two cases

– Case a: A[j]>x– Case a: A[j]>x

– Case b :A[j]  x

8

S. S Jain Subodh P.G. (Autonomous) College

Correctness of Partition

• Termination:
– When the loop terminates, j = r, so all elements in A

are partitioned into one of the three cases:
• A[p..i]  pivot
• A[i+1..j – 1] > pivot
• A[r] = pivot• A[r] = pivot

• The last two lines swap A[i+1] and A[r].
– Pivot moves from the end of the array to between

the two subarrays.
– Thus, procedure partition correctly performs the

divide step.

S. S Jain Subodh P.G. (Autonomous) College

Quicksort Overview

To sort a[left...right]:
1. if left < right:

1.1. Partition a[left...right] such that:
all a[left...p-1] are less than all a[left...p-1] are less than

a[p], and
all a[p+1...right] are >= a[p]

1.2. Quicksort a[left...p-1]
1.3. Quicksort a[p+1...right]

2. Terminate

S. S Jain Subodh P.G. (Autonomous) CollegeS. S Jain Subodh P.G. (Autonomous) College

